Trigonométrie

Formules

```
La formule du cercle trigonométrique

$$ \sin^2{\alpha} + \cos^2{\alpha} = 1 $$

La formule de la tangeante
```

La formule des sinus

```
f(a){\langle a}{\langle a}{\langle a}} = \frac{b}{\langle a}} = \frac{c}{\langle a}}
```

La formule des cosinus

```
$$ a^2 = b^2 + c^2 - 2bc\cos{\alpha} $$
$$ b^2 = a^2 + c^2 - 2ac\cos{\beta} $$
$$ c^2 = a^2 + b^2 - 2ab\cos{\gamma} $$
```

Somme des angles d'un triangle

```
$ \alpha = 180^{\circ} - \beta - \gamma $$
```

L'aire d'un triangle

```
s = \frac{bc\sin{\alpha}}{2} = \frac{ac\sin{\alpha}}{2} = \frac{ab\sin{\alpha}}{2} = \frac{ab\sin{\alpha}}{2} = \frac{ab\sin{\alpha}}{2}
```

Convertir en angle / minutes / secondes

```
$$ 1° = 60' = 3600'' $$
$$ 1' = 1/60° = 60'' $$
```

Convertir des angles en radian

```
$$ 180^\circ = \pi $
$$ 1^\circ = \frac{\pi^2}{180} = 0.0175 $$
$$ \frac{180^\circ}{\pi^2} = 57.3^\circ = 1 $$
```

Savoir quand utiliser les formules

Si on connaît	On utilise
Deux angles et un côté	La somme des angles et la formule des sinus
Deux côtés et l'angle entre les deux	La formule des cosinus
Trois côtés	La formule des cosinus

Comment les utiliser

Cette section n'est pas encore faite

Les fonctions trigonométriques

Voici une table pour comprendre les lettres dans les formules

Lettre	Signification
\$A\$	L'amplitude (grandeur mesurée)
\$\omega\$	Vitesse angulaire, pulsation par seconde, exprimée en radian
\$\phi\$	La phase d'origine
\$T\$	Durée d'un cycle. Equivaut à \$\frac{2\pi}{\omega}\$
\$f\$	Fréquence, exprimée en Hertz, au nombre de périodes par seconde, elle vaut \$\frac{1}{T}\$

Le tout est lié par la relation

```
$ \omega = 2 \pi f = \frac{2\pi}{T} $$
```

Revision #1 Created 24 May 2023 09:36:56 by SnowCode Updated 24 May 2023 09:37:05 by SnowCode